Silicon Substitution in Nanotubes and Graphene via Intermittent Vacancies
نویسندگان
چکیده
منابع مشابه
Magnetic properties of vacancies in graphene and single-walled carbon nanotubes
Spin-polarized density functional theory has been used to study the properties of vacancies in a graphene sheet and in single-walled carbon nanotubes (SWNTs). For graphene, we find that the vacancies are magnetic and the symmetry of the sheet is broken by the distortion of an atom next to the vacancy site. We also studied vacancies in four armchair SWNTs from (3,3) to (6,6) and six zigzag SWNTs...
متن کاملThermal Conductivity Reduction Due to Isotope Substitution in Single-walled Carbon Nanotubes and Graphene Nanoribbons
متن کامل
Hydroxyl vacancies in single-walled aluminosilicate and aluminogermanate nanotubes.
We report a theoretical study of hydroxyl vacancies in aluminosilicate and aluminogermanate single-walled metal-oxide nanotubes. Defects are introduced on both sides of the tube walls and lead to occupied and empty states in the band gap which are highly localized both in energy and in real space. Different magnetization states are found depending on both the chemical composition and the specif...
متن کاملGrowth of carbon nanotubes via twisted graphene nanoribbons
Carbon nanotubes have long been described as rolled-up graphene sheets. It is only fairly recently observed that longitudinal cleavage of carbon nanotubes, using chemical, catalytical and electrical approaches, unzips them into thin graphene strips of various widths, the so-called graphene nanoribbons. In contrast, rolling up these flimsy ribbons into tubes in a real experiment has not been pos...
متن کاملBinding Graphene Sheets Together Using Silicon: Graphene/Silicon Superlattice
We propose a superlattice consisting of graphene and monolayer thick Si sheets and investigate it using a first-principles density functional theory. The Si layer is found to not only strengthen the interlayer binding between the graphene sheets compared to that in graphite, but also inject electrons into graphene, yet without altering the most unique property of graphene: the Dirac fermion-lik...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry C
سال: 2019
ISSN: 1932-7447,1932-7455
DOI: 10.1021/acs.jpcc.9b01894